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Abstract 
A set of benzotriazine derivatives were tested for their GABAA/BzR complex binding affinity and 
minimum inhibitory concentrations were determined for all the compounds. Quantitative structure 
activity relationship (QSAR) analysis was applied to 28 of the above mentioned derivatives using a 
combination of various physicochemical, steric, electronic, and structural molecular descriptors. 
Different QSAR models revealed that CDE, PC & DDE parameters have significant impact on 
receptor binding affinity so as anticonvulsant activity of the benzotriazine derivatives. The low 
residual activity and adjacent r2 values (r2adj) observed indicated the predictive ability of the 
developed QSAR models. A series of new 3-acylpyrazolo [5, 1-c] [1, 2, 4] benzotriazine 5-oxide 
were synthesized on the basis of QSAR findings, screened for their anticonvulsant activity in MES 
and PTZ models and were compared with standard drugs phenytoin sodium and sodium valproate. 
 

Introduction 

Epilepsy, a ubiquitous disease characterized by 
recurrent seizures, inflicts more than 60 million 
people worldwide according to epidemiological 
studies. The available drug therapy, however, 
cause notable adverse side effects such as 
drowsiness, ataxia, gastrointestinal disturbance, 
hepatotoxicity and megaloblastic anaemia 8 
Gamma-aminobutyric acid (GABA), the major 
inhibitory neurotransmitter in the mammalian 
brain, targets the ionotropic GABAA and 
GABAC receptors  and the metabotropic 
GABAB receptors. Of these, it is the GABAA 
receptor family which has been the most widely 
studied since these receptors is the molecular 
target for the action of a number of clinically 
important drugs, including benzodiazepines 
(BZd), barbiturates, and anaesthetics. 10 
In order to obtain drugs which are more 
selective than BZd, the development of GABAA 
receptor subtype selective ligands or 
functionally selective ligands is the current 
strategy of medicinal chemistry researchers. 10 

The quantitative structure-activity relationship 
(QSAR) research field provides medicinal 
chemists with the ability to predict drug activity 
by mathematical equations which construct a 
relationship between the chemical structure and 
the biological activity [1, 2]. These 
mathematical equations are in the form of y = 
Xb +e that describe a set of predictor variables 
(X) with a predicted variable (y) by means of a 
regression vector (b) [3]. After the earlier 
QSAR studies by Hansch, who showed a 
correlation between biological activity and 
octanol-water partition coefficient [2], it is now 
assumed that the sum of substituent effects on 
the steric, electronic and hydrophobic 
interaction of compounds with their receptor 
determines their biological activity [4-6]. The 
first step in constructing the QSAR models is 
finding one or more molecular descriptors that 
represent variation in the structural property of 
the molecules by a number [7]. Nowadays, a 
wide range of descriptors are being used in 
QSAR studies which can be classified into 
different categories according to the Karelson 
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approach including; constitutional, geometrical, 
topological, quantum, chemical and so on [8]. 
There are different variable selection methods 
available including; multiple linear regression 
(MLR), genetic algorithm (GA), principal 
component or factor analysis (PCA/FA) and so 
on. The mathematical relationships between 
molecular descriptors and activity are used to 
find the parameters affecting the biological 
activity and/or estimate the property of other 
molecules. 10 
In our previous work, a QSAR study of new 3-
acylpyrazolo [5, 1-c] [1, 2, 4] benzotriazine 5-
oxide derivatives for BZR ligand affinity has 
been performed and a series of derivatives of 2-
substituted- 
5-nitrobenzimidazole  were synthesized based 
on concept of bioisosteric replacement which 
was first found to have anticonvulsant activities, 
among which 2-(4-Chloro-phenyl)-5-nitro-1H-
benzimidazole showed the strongest activity 
with an ED50 value of 30 mg/kg in the maximal 
electroshock (MES) and Pentylenetetrazole 
induced seizure model (scPTZ) test. 10 
Analyzing the relationship of the structure of 
series of benzotriazine derivatives which shows 
different GABA/BZd binding affinity, result 
findings of QSAR study and anticonvulsant 
activity of designed compounds, it was found 
that ring possessing substitutions with partition 
coefficient, charge-dipole and dipole-dipole 
energy as principle properties, enhanced the 
hydrophobic ability of target compounds, thus 

make them more permeable to the blood–brain 
barrier and enhance anticonvulsant activity. 
So we thought that the presence of a bulkier and 
electronegative substitution in the ring was 
essential structure for the anticonvulsant 
activity. In this paper, we designed and 
prepared a series of 3-acylpyrazolo [5, 1-c] [1, 
2, 4] benzotriazine 5-oxide derivatives. The 
hypothesis was that a benzotriazine ring with a 
bulkier acyl group may have higher affinity for 
the receptor and enhance their anticonvulsant 
activity. The new compounds were evaluated as 
anticonvulsant agents in experimental epilepsy 
models, i.e., maximal electroshock (MES) 
induced seizure in mice. 
In view of the above and in continuation of our 
studies on the agonistic activities of 
benzotriazine derivatives, as well as on 
correlation of molecular properties with activity 
[4-8,28-35], the objective of this investigation 
was to study the usefulness of QSAR in the 
prediction of the anticonvulsant activity of 28 
benzotriazine derivatives. Multiple linear 
regression (MLR) models have been developed 
as a mathematical equation which can relate 
chemical structure to the inhibitory activity. 10 

Results and Discussion 
In the first step of present study, different 
substituted benzotriazines were evaluated for 
GABAA/BzR complex binding affinity activity. 
Structures and binding data for new, 
synthesized compounds as inhibition constant 
(Ki) values are summarized in Table 1.

 
 Table 1: The structure and BZR ligand affinity of new 3-acylpyrazolo [5, 1-c] [1, 2, 4] 
benzotriazine 5-oxide 

 

 
 

Compound No R R’ X Ki (nM) log 1/CKi 
1.  H Cl O 64 -1.80618 
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2.  Me Cl O 551 -2.74115 
3.  Me OEt O 902 -2.95521 
4.  Me OPh O 53 -1.72428 
5.  Ph Cl O 3494 -3.54332 
6.  o-OMe-Ph Cl O 4200 -3.62325 
7.  p-OMe-Ph Cl O 1240 -3.09342 
8.  p-OMe-Ph OEt O 919 -2.96332 
9.  3-Py Cl O 2400 -3.38021 
10.  3-Py OEt O 2000 -3.30103 
11.  1,3-Benzodioxol-5-yl Cl O 2900 -3.4624 
12.  2-Furyl Cl O 72 -1.85733 
13.  2-Furyl OEt O 28 -1.44716 
14.  2-Furyl OPh O 7 -0.8451 
15.  2-Furyl OCH2PH O 1.4 -0.14613 
16.  2-Furyl OCH2C=Ch O 3.5 -0.54407 
17.  2-Thienyl Cl O 62 -1.79239 
18.  2-Thienyl OEt O 45 -1.65321 
19.  2-Thienyl OPh O 8.9 -0.94939 
20.  2-Thienyl OCH2Ph O 2.7 -0.43136 
21.  3-Thienyl Cl O 121 -2.08279 
22.  2-Pyrrolyl Cl O 4 -0.60206 
23.  2-Pyrrolyl OEt O 1836 -3.26387 
24.  2-Pyrrolyl OPh O 276 -2.44091 
25.  1-Methylpyrrol-2-yl Cl O 5202 -3.71617 
26.  1-Methylpyrrol-2-yl OEt O 819 -2.91328 
27.  1-Methylpyrrol-2-yl OPh O 1300 -3.11394 
28.  1-Methylpyrrol-2-yl Cl O 380 -2.57978 

 

The screening results reveal that all the 
compounds exhibited appreciable in vitro 
binding affinity towards GABAA/BzR receptor 
complex. In the second step, we focused our 
efforts on developing the QSAR models of 
compounds 1 – 28 as anticonvulsants. A set of 
benzotriazines was used for MLR model 
generation. The reference drugs were not 
included in model generation as they belong to 
a different structural series. Binding affinity 
data determined as nM were first transformed to 
the negative logarithms (log1/c nM), (Table 1) 
which was used as a dependent variable in the 
QSAR study. Different physicochemical, steric, 
electronic, and thermodynamic descriptors were 
used as independent variables and were 
correlated with GABAA/BzR complex binding 
affinity, which finally responsible for 
anticonvulsant activity of tested compounds. 
Developing a QSAR model requires a diverse 
set of data, and, thereby a large number of 
descriptors have to be considered. Descriptors 

are numerical values that encode different 
structural features of the molecules. Selection of 
a set of appropriate descriptors from a large 
number of them requires a method, which is 
able to discriminate between the parameters. 
Pearson's correlation matrix has been performed 
on all descriptors by using SYSTAT 12.0 
Statistical Software. The analysis of the matrix 
revealed six descriptors for the development of 
MLR model. The values of descriptors selected 
for MLR model are presented in Table 2. Linear 
models were then formed by a stepwise addition 
of terms. A deletion process was then 
employed, whereby each variable in the model 
was held out in turn and using the remaining 
parameters models was generated. Each 
descriptor was chosen as input for the statistical 
software package and then the stepwise addition 
method implemented in the software was used 
for choosing the descriptors contributing to the 
binding affinity of benzotriazine derivatives.
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Table 2: Values of molecular descriptors used in the regression analysis. 

Compound HE CDE DDE SBE TRE PC 
1 -13.774 6.530 0.384 -0.972 5.140 3.896 
2 -13.699 6.484 0.214 -1.010 4.772 2.223 
3 -13.455 4.170 -0.100 -0.979 4.640 -0.483 
4 -12.598 4.540 4.125 -1.170 0.166 1.156 
5 -12.925 6.438 0.366 -1.017 7.381 1.376 
6 -12.164 5.601 -3.819 -1.016 9.921 2.324 
7 -12.089 6.937 0.534 -1.008 7.560 1.323 
8 -11.950 4.632 0.216 -0.969 7.704 1.059 
9 -13.158 7.514 1.107 -1.022 15.074 2.838 
10 -13.009 5.216 0.784 -0.986 15.272 -0.205 
11 -11.807 8.060 3.377 -1.204 6.379 0.863 
12 -12.674 0.825 0.837 -1.634 10.954 0.112 
13 -12.532 -1.471 0.595 -1.569 10.963 0.291 
14 -12.499 4.979 3.059 -1.745 4.979 4.931 
15 -12.237 -1.393 1.309 -1.568 5.280 3.530 
16 -12.514 -0.815 2.524 -1.530 11.081 0.362 
17 -12.798 2.959 2.791 -1.163 14.362 1.035 
18 -12.583 2.612 2.501 -1.099 14.359 0.771 
19 -12.526 0.770 2.628 -1.308 9.506 2.145 
20 -11.780 -0.112 3.283 -1.060 8.524 3.010 
21 -12.630 8.834 2.024 -0.962 17.058 1.035 
22 -12.130 6.686 2.213 -1.922 9.195 0.114 
23 -11.976 4.385 1.916 -1.874 9.063 -0.510 
24 -11.929 4.780 2.110 -2.090 4.184 1.493 
25 -12.040 6.088 1.296 -1.990 8.500 0.467 
26 -11.928 3.865 0.994 -2.167 11.710 0.203 
27 -11.824 4.161 1.119 -2.211 1.757 1.846 
28 -12.094 6.073 0.484 -2.024 10.126 0.467 

 
It was considered that two variables having 
correlation greater than 0.5 were not included in 
the final equation, so that by introducing 
different groups on the pharmacophore each 
variable could be regulated independently to 

enhance the biological activity of the designed 
compound. For the same purpose Pearson 
correlation matrix has been derived between 
selected descriptors which were shown in table 
3.

 
Table 3: Pearson correlation matrix between selected descriptors 

 BA HE CDE DDE SBE TRE 
BA 1.000      
HE -0.138 1.000     

CDE -0.619 -0.099 1.000    
DDE 0.433 0.133 -0.139 1.000   
SBE 0.071 -0.491 0.132 -0.073 1.000  
TRE 0.097 -0.007 -0.055 -0.061 0.127 1.000 

 

Now for the purpose of validation of the final 
model, the data set was randomly divided into 

training and test group. Compounds of training 
set were used for internal validation and 
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compounds of test set were used for external 
validation. In this study we removed compound 
3, 9, 10, 14 and 16 as test compound and 
remaining were used as training set. 
Compounds of training set were used for the 
development of the equation. 
The specifications for the best-selected MLR 
models are shown in Table 4. The di-parametric 
model indicated the importance of charge-
dipole energy (CDE) and partition coefficient 
(PC) in contribution to GABAA receptor 
binding affinity which ultimately responsible 
for anticonvulsant activity (model 1, Table 4). 
Addition of dipole-dipole energy (DDE) as an 
additional parameter to model 1 significantly 
increased the linear regression coefficient (R2) 

from 0.812 to 0.923 (model 2, Table 4). 
Similarly, the addition of a another parameter 
HOMO energy (HE) also increased the 
regression coefficient, but a MLR method only 
can be used when a relatively small number of 
molecular descriptors are used (at least five to 
six times smaller than the total number of 
compounds). In this case (for 19 compounds), 
only three descriptors can be used to develop a 
good QSAR model in order to avoid a high 
chance of spurious correlations. Finally by 
removing a compound as an outlier we reached 
to squared R value of 0.954 with only three 
descriptors explaining the biological activity of 
the series. In this approach, only the QSAR 
models 1 and 2 can be considered. 

 
Table 4: Best MLR models for the prediction of GABAA/BzR complex binding affinity 

No. Descriptor 
used 

MLR equation N R2 SE F 

E1 CDE & PC BA= -1.698 (±0.242) -0.300 (±0.040) CDE+ 
0.360 (±0.098) PC 

20 0.812 0.494 36.681 

E2 CDE, PC & 
DDE 

BA=-2.176 (±0.188)-0.273 (±0.027) CDE 
+0.220 (±0.046) DDE +0.415 (±0.066) PC 

20 0.923 0.325 64.037 

E3 CDE, PC & 
DDE 

BA= -2.160(±0.149)-0.271 (±0.021) CDE 
+0.219 (0.036) DDE +0.429 (±0.052) PC 

19 0.954 0.257 103.223 

 

It is well known that there are three important 
components in any QSAR study: development 
of models, validation of models and utility of 
developed models. Validation is a crucial aspect 
of any QSAR analysis [36]. The statistical 
quality of the resulting models, as depicted in 
Table 4, is determined by r2, SE, and F [37-39]. 
The F-value presented in Table 4 is found 
statistically significant at 99% level since all the 
calculated F values are higher as compared to 
tabulated values. 
For the testing the validity of the predictive 
power of selected MLR models the LOO 
technique was used. The developed models 
were validated by the calculation of following 
statistical parameters: PRESS, SPRESS and r2adj 
(Table 5). These parameters were calculated 
from the following equations  
PRESS = ∑ (Yobs-Ycal) 2 

SPRESS = √PRESS / n 
r2adj = 1- r2 (n-1/n-p-1) 

Where, Yobs, Ycalc and Ymean are observed, 
calculated and mean values; n, number of 
compounds; p, number of independent 
parameters. 
PRESS is an acronym for prediction sum of 
squares. It is used to validate a regression model 
with regards to predictability. To calculate 
PRESS, each observation is individually 
omitted. The remaining n – 1 observations are 
used to calculate a regression and estimate the 
value of the omitted observation. This is done n 
times, once for each observation. The difference 
between the actual Y value, yobs, and the 
predicted Y, ycalc, is called the prediction error. 
The sum of the squared prediction errors is the 
PRESS value. The smaller PRESS is, the better 
the predictability of the model. These values are 
in terms of the dependent variable, y. 
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Model No. PRESS SPRESS r2adj 
1 4.1411 0.4550 0.790 
2 1.6923 0.2908 0.909 
3 1.7329 0.3020 0.945 

 
In many cases r2adj is taken as a proof of the 
high predictive ability of QSAR models. A high 
value of these statistical characteristic (> 0.5) is 
considered as a proof of the high predictive 
ability of the model, although recent reports 
have proven the opposite [40]. It is proven that 
the only way to estimate the true predictive 
power of a model is to test it on a sufficiently 
large collection of compounds from an external 
test set. The test set must include no less than 
five compounds, whose activities and structures 
must cover the range of activities and structures 
of compounds from the training set. This 
application is necessary for obtaining trustful 
statistics for comparison between the observed 
and predicted activities for these compounds. A 
reliable model should be also characterized by a 

high correlation coefficient between the 
predicted and observed activities of compounds 
from a test set of molecules that was not used to 
develop the models. 

Conclusion 
Experimental 
The synthetic pathway for preparation of the 
benzimidazoles is shown in Scheme 1. 
Compounds PN1, PN2, PN3 and PN4 were 
synthesized by condensation of corresponding 
aldehydes i.e. 4-Chlorobenzaldehyde, 4-
Fluorobenzaldehyde, pyridine-2-carbaldehyde 
and 4-Methylbenzaldehyde; appropriate 4-Nitro 
substituted o-phenylenediamine, and sodium 
metabisulfite in absolute ethanol (95%). 

 

 
 

General procedure for Synthesis of 2-
substituted-5-nitrobenzimidazole derivatives  
To a Solution of 1eq of 4-nitro o-
phenylenediamine and 1 eq of corresponding 
aldehyde in ethanol was added 4 eq of Na2S2O5 
and the resulting mixture was reflux for 4 h. 
After reaction mixture was cooled to room 
temperature, diethyl ether was added and the 
crude product was filtered off. The crude 
product was suspended in mixture of ethanol–
diethyl ether several times until the powder was 
obtained analytically pure. 
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